Heavy equipment

Heavy equipment, heavy machinery, earthmovers, construction vehicles, or construction equipment, refers to heavy-duty vehicles specially designed to execute construction tasks, most frequently involving earthwork operations or other large construction tasks. Heavy equipment usually comprises five equipment systems: the implement, traction, structure, power train, and control/information.
Heavy equipment has been used since at least the 1st century BC, when the ancient Roman engineer Vitruvius described a crane powered by human or animal labor in De architectura.
Heavy equipment functions through the mechanical advantage of a simple machine that multiplies the ratio between input force applied and force exerted, easing and speeding tasks which often could otherwise take hundreds of people and many weeks' labor. Some such equipment uses hydraulic drives as a primary source of motion.
The word plant, in this context, has come to mean any type of industrial equipment, including mobile equipment (e.g. in the same sense as powerplant). However, plant originally meant "structure" or "establishment" – usually in the sense of factory or warehouse premises; as such, it was used in contradistinction to movable machinery, often in the phrase "plant and equipment".
Innovations and new technologies
[edit]The design of heavy equipment has increasingly incorporated modern electronics and software, a process known as Fleet digitalization. This integration of technology facilitates greater automation, safety monitoring, and operational efficiency on construction and mining sites, creating what is often referred to as an intelligent job site.
Fleet telematics and monitoring
[edit]Fleet telematics systems are utilized for the Fleet management of heavy equipment. A ruggedized Telematic control unit, installed on each asset, uses a GPS tracking unit to provide real-time Vehicle location data. In addition to location, the system transmits a wide range of telemetry data, including engine hours, fuel consumption, idle time, and diagnostic fault codes.[1] This data is used for operational oversight, such as to track asset utilization, schedule predictive maintenance, and manage fuel with Fuel-management systems. Studies in the construction industry have correlated the use of such systems with improvements in overall project efficiency.[2] A primary function of these platforms is to address the challenge of aggregating data from a mixed fleet of equipment from various manufacturers into a single, unified interface.[3]
Autonomy and robotics
[edit]Research and development in heavy equipment has increasingly focused on robotics and autonomous operation. Several manufacturers have commercialized autonomous systems that allow machines like haul trucks and dozers to operate without a human driver by following pre-programmed routes from a digital site plan.[4] Such applications are most prevalent in mining and large-scale earthwork operations where tasks are repetitive and occur in controlled environments. Semi-autonomous features, such as grade control and automated digging cycles on excavators, are also becoming common, assisting operators in performing tasks with greater speed and precision.
Operator safety and assistance
[edit]Technology is applied to improve operator safety and situational awareness. Video telematics systems, which utilize multiple ruggedized cameras, offer operators a comprehensive view of their surroundings to mitigate blind spots. These systems also record operational data for incident analysis. Operator scoring applications analyze telemetry data to identify potentially hazardous operating practices, such as excessive speed or abrupt movements, providing a basis for targeted safety training. Advanced driver-assistance systems (ADAS) are also being adapted for heavy equipment, with features like object detection and collision avoidance alerts to protect both the operator and ground personnel.
Electrification
[edit]The development of electric and hybrid-electric powertrains is an area of ongoing development in heavy equipment manufacturing. Several manufacturers, including Caterpillar,[5] Volvo,[6] and Liebherr,[7] have produced electric or hybrid-electric prototypes and commercial models. While technical challenges related to battery capacity and charging infrastructure persist for the largest classes of equipment, electric powertrains provide operational advantages such as the elimination of on-site emissions, reduced noise levels for operation in urban areas, and potentially lower maintenance and energy costs.[8]
Types
[edit]These subdivisions, in this order, are the standard heavy equipment categorization.
Tractor
- Bulldozer (dozer, track dozer)
- Snowcat
- Snowplow
- Skidder
- Tractor (wheel tractor)
- Track tractor
- Locomotive
- Artillery tractor
- Crawler-transporter
- Military engineering vehicles
Grader
Excavator
- Amphibious excavator
- Compact excavator
- Dragline excavator
- Dredger
- Bucket-wheel excavator
- Excavator (digger)
- Long reach excavator
- Power shovel
- Reclaimer
- Suction excavator
- Walking excavator
- Trencher
- Yarder
Backhoe
Timber
- Feller buncher
- Harvester
- Forwarder
- Logging truck
- Skidder
- Power saw
- Stump grinder
- Track harvester
- Wheel forwarder
- Wheel skidder
Pipelayer
Scraper
- Fresno scraper
- Scraper
- Wheel tractor-scraper (belly scraper)
Mining
- Construction and mining tractor
- Construction and mining truck
- Dumper
- Dump truck
- Haul truck
- Mining equipment
- Reclaimer
- Stacker
- Spreader
Articulated
Compactor
- Wheel dozer (soil compactor)
- Soil stabilizer
Loader
- Loader (payloader, front loader, wheel loader, integrated tool carrier)
- Skip loader (skippy)
Track loader
Skid-steer loader
Material handler
- Aerial work platform, Lift table
- Crane
- Block-setting crane
- Bulk-handling crane
- Crane vessel
- Aerial crane
- Container crane
- Gantry crane
- Overhead crane
- Electric overhead traveling crane
- Ring crane
- Level luffing crane
- Mobile crane
- Travel lift
- Forklift
- Garbage truck
- Grapple truck, Knuckleboom loader (trailer mount)
- Straddle carrier
- Sidelifter
- Reach stacker
- Telescopic handlers
- Tow truck
Paving
- Asphalt paver
- Asphalt plant
- Cold planer
- Cure rig
- Paver
- Pavement milling
- Pneumatic tire compactor
- Roller (road roller, roller compactor)
- Slipform paver
- Vibratory compactor, Compactor
Underground
Hydromatic tool
- Ballast tamper
- Attachments
- Drilling rig
- Horizontal directional drilling
- Earth auger
- Pile driver
- Post pounder
- Rotary tiller (rototiller, rotovator)
Highway
- Tractor unit
- Ballast tractor
- Pushback tractor
- Railcar mover
- Highway 10 yard rear dump
- Highway bottom dump (stiff), pup (belly train), triple
- Highway end dump and side dump
- Highway transfer, Transfer train
- Concrete mixer
- Concrete mix truck
- Concrete mix dozer
- Lowboy (trailer)
- Street sweeper
- Street sweep truck
- Street sweep dozer
Images
[edit]-
The Caterpillar D10N bulldozer evolved from tracked-type tractors and is characterized by a steel blade attached to the front that is used to push other equipment and construction materials, such as earth.
-
The bucket excavator Komatsu PC210-LC.
-
The wheel trencher MARAIS SMC 200 R.
-
Fixed crane in a coal mine in Germany
-
Caterpillar D9L bulldozer, excavators and other heavy equipment vehicles parked near a quarry in Israel
-
Wheel loader
-
Grader cleaning and leveling
-
Heavy duty excavator with large bucket equipped.
-
Landfill compactor (tamping tip)
-
Komatsu Dozer pushing coal on the job site
-
A wheeled front loader tractor equipped with a large bucket elevated by hydraulic rams.
-
Folded conveyor on a tracked grinder
- Military engineering vehicles
-
The militarized Caterpillar D9 armored bulldozer allows for earthmoving projects in a combat environment. In the picture: IDF Caterpillar D9R.
-
Military scraper
-
PiPz Dachs armoured engineering vehicle of the German Army (2008)
-
Temporary roads deployment complex during the "Armiya 2021" exhibition
Implements and hydromechanical work tools
[edit]- auger
- backhoe
- bale spear
- broom
- bulldozer blade
- clam shell bucket
- cold plane
- demolition shears
- equipment bucket
- excavator bucket
- forks
- grapple
- hydraulic hammer, hoe ram
- hydraulics
- hydraulic tilting bucket (4-in-1)
- landscape tiller
- material handling arm
- mechanical pulverizer, crusher
- multi processor
- pavement removal bucket
- pile driver
- power take-off (PTO)
- quick coupler
- rake
- ripper
- rotating grab
- sheep's foot compactor
- skeleton bucket
- snow blower
- stump grinder
- stump shear
- thumb
- tiltrotator
- trencher
- vibratory plate compactor
- wheel saw
Traction: Off-the-road tires and tracks
[edit]
Heavy equipment requires specialized tires for various construction applications. While many types of equipment have continuous tracks applicable to more severe service requirements, tires are used where greater speed or mobility is required. An understanding of what equipment will be used for during the life of the tires is required for proper selection. Tire selection can have a significant impact on production and unit cost. There are three types of off-the-road tires, transport for earthmoving machines, work for slow moving earthmoving machines, and load and carry for transporting as well as digging. Off-highway tires have six categories of service C compactor, E earthmover, G grader, L loader, LS log-skidder and ML mining and logging. Within these service categories are various tread types designed for use on hard-packed surface, soft surface and rock. Since tires are a large expense on any construction project, careful consideration should be given to prevent excessive wear or damage.
Heavy equipment operator
[edit]A heavy equipment operator drives and operates heavy equipment used in engineering and construction projects.[9][10] Typically only skilled workers may operate heavy equipment, and there is specialized training for learning to use heavy equipment.
Much publication about heavy equipment operators focuses on improving safety for such workers. The field of occupational medicine researches and makes recommendations about safety for these and other workers in safety-sensitive positions.
Equipment cost
[edit]Due to the small profit margins on construction projects it is important to maintain accurate records concerning equipment utilization, repairs and maintenance. The two main categories of equipment costs are ownership cost and operating cost.[11]
Ownership cost
[edit]To classify as an ownership cost an expense must have been incurred regardless of if the equipment is used or not. These costs are as follows:
- purchase expense
- salvage value
- tax savings from depreciation
- major repairs and overhauls
- property taxes
- insurance
- storage
Depreciation can be calculated several ways, the simplest is the straight-line method. The annual depreciation is constant, reducing the equipment value annually. The following are simple equations paraphrased from the Peurifoy & Schexnayder text:
m = some year in the future N = equipment useful life (years) and Dn = Annual depreciation amount
Book value (BV) in year m
|
example: N = 5 purchase price = $350,000 m = 3 years from now
|
Operating cost
[edit]For an expense to be classified as an operating cost, it must be incurred through use of the equipment. These costs are as follows:[12]
|
|
The biggest distinction from a cost standpoint is if a repair is classified as a major repair or a minor repair. A major repair can change the depreciable equipment value due to an extension in service life, while a minor repair is normal maintenance. How a firm chooses to cost major and minor repairs vary from firm to firm depending on the costing strategies being used. Some firms will charge only major repairs to the equipment while minor repairs are costed to a project. Another common costing strategy is to cost all repairs to the equipment and only frequently replaced wear items are excluded from the equipment cost. Many firms keep their costing structure closely guarded[citation needed] as it can impact the bidding strategies of their competition. In a company with multiple semi-independent divisions, the equipment department often wants to classify all repairs as "minor" and charge the work to a job – therefore improving their 'profit' from the equipment.
Models
[edit]Die-cast metal promotional scale models of heavy equipment are often produced for each vehicle to give to prospective customers. These are typically in 1:50 scale. The popular manufacturers of these models are Conrad and NZG in Germany, even for US vehicles.
Notable manufacturers
[edit]The largest 10 heavy equipment manufacturers in 2022[14]
No. | Company | Country | Sales (billion USD) | Share of total |
---|---|---|---|---|
1 | Caterpillar | ![]() |
37,5 | 16.3% |
2 | Komatsu | ![]() |
24,7 | 10.7% |
3 | XCMG | ![]() |
13,4 | 5.8% |
4 | John Deere | ![]() |
12,5 | 5.4% |
5 | Sany | ![]() |
11,9 | 5.2% |
6 | Volvo Construction Equipment | ![]() |
9,9 | 4.3% |
7 | Liebherr | ![]() |
9,9 | 4.3% |
8 | Hitachi Construction Machinery | ![]() |
9,2 | 4.0% |
9 | Sandvik | ![]() |
7,8 | 3.4% |
10 | JCB | ![]() |
7,0 | 3.0% |
Other manufacturers include:
- Anhui Heli
- Atlas Copco
- BEML Limited
- Bobcat Company
- Case Construction Equipment
- Chelyabinsk Tractor Plant
- CNH Global
- Demag
- Fiat-Allis
- HD Hyundai Infracore
- HEPCO
- HIAB
- Hidromek
- Ingersoll Rand
- Kubota
- Kobelco
- LiuGong
- MARAIS
- Navistar International Corporation
- NCK
- New Holland
- Track Marshall
- Orenstein and Koppel GmbH (O&K)
- Paccar
- Poclain
- Rototilt
- Shantui
- ST Kinetics
- Takeuchi Manufacturing
- Wacker Neuson
- Yanmar
- Zoomlion
See also
[edit]- Associated Equipment Distributors, the trade association for heavy equipment distributors
- Construction equipment theft
- Non-road engine
References
[edit]- ^ Peurifoy & Schexnayder "Construction Planning Equipment, and Methods" McGraw Hill 6th edition ISBN 0-07-232176-8, 2002.
- ^ G. N. Aretoulis; K. C. Apostolou (July 2023). "Comparative Evaluation of Fleet Management Software in the Greek Construction Industry". Journal of Engineering and Applied Sciences. 14 (2).
- ^ A. K. M. F. U. Islam; J. Suhonen (January 2024). "Developing a comprehensive solution for collecting and managing data from machines by different manufacturers". Journal of Engineering and Applied Sciences. 15 (1).
- ^ "Caterpillar Announces Acquisition of Robotic Expertise" (Press release). Caterpillar. June 2020. Retrieved July 14, 2020.
- ^ Lambert, Fred (January 29, 2019). "Caterpillar unveils an all-electric 26-ton excavator with a giant 300 kWh battery pack". Electrek. Retrieved July 14, 2020.
- ^ McLoud, Don (April 24, 2020). "Volvo CE gets $2M grant to test electric excavator, loader in California". Equipment World. Randall-Reilly. Retrieved July 14, 2020.
- ^ Gruver Doyle, Marcia (November 18, 2019). "Liebherr's prototype battery-powered LB 16 drilling rig has 10-hour run time (VIDEO)". Equipment World. Randall-Reilly. Retrieved July 14, 2020.
- ^ Rubenstone, Jeff (June 5, 2019). "Construction Equipment Goes Electric, But Hurdles Remain". Engineering News-Record. BNP Media. Retrieved July 14, 2020.
- ^ U.S. Department of Labor – Occupational Outlook Handbook
- ^ V. J. Davies, Ken Tomasin (1996). Construction Safety Handbook. Thomas Telford. ISBN 0-7277-2519-X.
- ^ Peurifoy & Schexnayder "Construction Planning Equipment, and Methods" McGraw Hill 6th edition ISBN 0-07-232176-8, 2002.
- ^ Bartholomew, S.H. "Estimating and Bidding for Heavy Construction" CSU Chico, Upper Saddle River, NJ: Prentice Hall, ISBN 0-13-598327-4, 2000
- ^ "Heavy Equipment parts catalog". AGA Parts. Retrieved 2020-09-30.
- ^ "Construction equipment manufacturers: world equipment sales". Statista. Retrieved 2023-12-02.
External links
[edit]- Media related to Heavy equipment at Wikimedia Commons