Compound of five cuboctahedra
Appearance
Compound of five cuboctahedra | |
---|---|
![]() | |
Type | Uniform compound |
Index | UC59 |
Polyhedra | 5 cuboctahedra |
Faces | 40 triangles, 30 squares |
Edges | 120 |
Vertices | 60 |
Symmetry group | icosahedral (Ih) |
Subgroup restricting to one constituent | pyritohedral (Th) |
In geometry, this uniform polyhedron compound is a composition of 5 cuboctahedra. It has icosahedral symmetry Ih. It could also be called the anticosicosahedron.
Cartesian coordinates
[edit]Cartesian coordinates for the vertices of this compound are all the cyclic permutations of
- (±2, 0, ±2)
- (±τ, ±τ−1, ±(2τ−1))
- (±1, ±τ−2, ±τ2)
where τ = (1+√5)/2 is the golden ratio (sometimes written φ).
Construction
[edit]The compound of 5 cuboctahedra could be made by the rectification of the compound of five cubes or compound of five octahedra. It could also be formed by the expansion of the compound of five or ten tetrahedra.
References
[edit]- Skilling, John (1976), "Uniform Compounds of Uniform Polyhedra", Mathematical Proceedings of the Cambridge Philosophical Society, 79 (3): 447–457, doi:10.1017/S0305004100052440, MR 0397554.
- McCooey, Robert. "Uniform Polyhedron Compounds". Hedron Dude. Retrieved 24 June 2025.