Jump to content

Energy density Extended Reference Table

From Wikipedia, the free encyclopedia

This is an extended version of the energy density table from the main Energy density page.

Energy densities table
Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary antimatter 89,875,517,874 depends on density
Deuterium–tritium fusion 576,000,000[1]
Uranium-235 fissile isotope 144,000,000[1] 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor 3,456,000 35%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light-water reactor 443,000 35%
Ta-180m isomer 41,340 689,964
Metallic hydrogen (recombination energy) 216[2]
Specific orbital energy of low Earth orbit (approximate) 33.0
Beryllium + oxygen 23.9[3]
Lithium + fluorine 23.75[citation needed]
Octaazacubane potential explosive 22.9[4]
Hydrogen + oxygen 13.4[5]
Gasoline + oxygen 13.3[citation needed]
Dinitroacetylene explosive – computed[citation needed] 9.8
Octanitrocubane explosive 8.5[6] 16.9[citation needed]
Tetranitrotetrahedrane explosive – computed[citation needed] 8.3
Heptanitrocubane explosive – computed[citation needed] 8.2
Sodium (reacted with chlorine)[citation needed] 7.0349
Hexanitrobenzene explosive 7[7]
Tetranitrocubane explosive – computed[citation needed] 6.95
Ammonal (Al+NH4NO3 oxidizer)[citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant – computed[citation needed] 6.6
Nitroglycerin 6.38[8] 10.2[9]
ANFOANNM[citation needed] 6.26
Lithium–air battery 6.12
Octogen (HMX) 5.7[8] 10.8[10]
TNT[11] 4.610 6.92
Copper Thermite (Al + CuO as oxidizer)[citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
ANFO[citation needed] 3.7
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
Li-ion nanowire battery 2.54 29 95%[clarification needed][12]
Lithium thionyl chloride battery[13] 2.5
Water (220.64 bar, 373.8 °C)[citation needed][clarification needed] 1.968 0.708
Kinetic energy penetrator[clarification needed] 1.9 30
Lithium–sulfur battery[14] 1.80[15] 1.26
Fluoride-ion battery [citation needed] 1.7 2.8
Hydrogen closed cycle fuel cell[16] 1.62
Hydrazine decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Molten salt 1[citation needed] 98%[17]
Molecular spring (approximate)[citation needed] 1
Lithium metal battery[18][19] 0.83-1.01 1.98-2.09
Sodium–sulfur battery 0.72[20][better source needed] 1.23[citation needed] 85%[21]
Lithium-ion battery[22][23] 0.46–0.72 0.83–3.6[24] 95%[25]
Sodium–nickel chloride battery, high temperature[vague] 0.56
Zinc–manganese (alkaline) battery, long life design[18][22] 0.4-0.59 1.15-1.43
Silver-oxide battery[18] 0.47 1.8
Flywheel 0.36–0.5[26][27]
5.56 × 45 mm NATO bullet muzzle energy density[clarification needed] 0.4 3.2
Nickel–metal hydride battery (NiMH), low power design as used in consumer batteries[28] 0.4 1.55
Liquid nitrogen 0.349
Waterenthalpy of fusion 0.334 0.334
Zinc–bromine flow battery (ZnBr)[29] 0.27
Nickel–metal hydride battery (NiMH), high-power design as used in cars[30] 0.250 0.493
Nickel–cadmium battery (NiCd)[22] 0.14 1.08 80%[25]
[22] || 0.13 || 0.331 || ||
Lead–acid battery[22] 0.14 0.36
Vanadium redox battery 0.09[citation needed] 0.1188 7070-75%
Vanadium bromide redox battery 0.18 0.252 80%–90%[31]
Ultracapacitor 0.0199[32] 0.050[citation needed]
Supercapacitor 0.01[citation needed] 80%–98.5%[33] 39%–70%[33]
Superconducting magnetic energy storage 0.008[34][bare URL] >95%
Capacitor 0.002[35]
Neodymium magnet 0.003[36]
Ferrite magnet 0.0003[36]
Spring power (clock spring), torsion spring 0.0003[citation needed] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %

Notes

[edit]
  1. ^ a b Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN 978-3-319-19845-3.
  2. ^ Silvera, Isaac F.; Cole, John W. (2010-03-01). "Metallic hydrogen: The most powerful rocket fuel yet to exist". Journal of Physics: Conference Series. 215 (1) 012194. Bibcode:2010JPhCS.215a2194S. doi:10.1088/1742-6596/215/1/012194. ISSN 1742-6596.
  3. ^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide". Journal of the American Chemical Society. 75 (13): 3102–3103. doi:10.1021/ja01109a018.
  4. ^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?". Inorganic Chemistry. 35 (24): 7124–7133. doi:10.1021/ic9606237. PMID 11666896.
  5. ^ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Archived from the original (PDF) on 9 May 2021. Retrieved 9 May 2021.
  6. ^ Ju, Xue-Hai; Wang, Zun-Yao (April 2009). "Theoretical Study on Thermodynamic and Detonation Properties of Polynitrocubanes". Propellants, Explosives, Pyrotechnics. 34 (2). Wiley: 106–109. doi:10.1002/prep.200800007. Archived from the original on 2013-01-05.
  7. ^ Matsunaga, Takehiro; Nakayama, Yoshio; Iida, Mitsuaki; Oinuma, Senzo; Ishikawa, Noboru; Tanaka, Katsumi (May 1992). "Am1 MO Study of Benzene Nitro Derivatives". Propellants, Explosives, Pyrotechnics. 17 (2): 63–69. doi:10.1002/prep.19920170204. Archived from the original on 2013-01-05.
  8. ^ a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  9. ^ Nitroglycerin
  10. ^ HMX
  11. ^ Kinney, G. F.; Graham, K. J. (1985). Explosive shocks in air. Springer. ISBN 978-3-540-15147-0.
  12. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". Stanford Report. 2007-12-18. Archived from the original on 2010-01-07. Retrieved 2010-05-07.
  13. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  14. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  15. ^ Kolosnitsyn, V. S.; Karaseva, E. V. (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi:10.1134/s1023193508050029. S2CID 97022927.
  16. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  17. ^ "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  18. ^ a b c "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  19. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  20. ^ "New battery could change world, one house at a time". Daily Herald. Utah. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07.
  21. ^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) – Document #5960185". Proceedings of the Intersociety Energy Conversion Engineering Conference. 2. OSTI 5960185.
  22. ^ a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  23. ^ A typically available lithium-ion cell with an energy density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh – Highest Energy Density Cell in Market (LC-18650H4)". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  24. ^ "Lithium Batteries". Archived from the original on 2011-08-08. Retrieved 2010-07-02.
  25. ^ a b Lemire-Elmore, Justin (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7: Table 3: Input and Output Energy from Batteries. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26.
  26. ^ "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  27. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  28. ^ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  29. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  30. ^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  31. ^ "V-Fuel Company and Technology Sheet 2008" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  32. ^ "Ultracapacitors – BCAP3000". Maxwell Technologies. Retrieved 2010-05-07.
  33. ^ a b Zdenek, Cerovský; Pavel, Mindl. "Hybrid drive with super-capacitor energy storage" (PDF). Faculty of Mechanical Engineering CTU in Prague. Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.
  34. ^ [1] Archived February 16, 2010, at the Wayback Machine
  35. ^ Juvonen, Matti (7 February 2003). "Supercapacitors: replacing batteries" (lecture notes). Department of Computing, Imperial College London. Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  36. ^ a b Rahman, M.; Slemon, G. (September 1985). "Promising applications of neodymium boron Iron magnets in electrical machines" (PDF). IEEE Transactions on Magnetics. 21 (5): 1712–1716. Bibcode:1985ITM....21.1712R. doi:10.1109/TMAG.1985.1064113. ISSN 0018-9464. Archived from the original on 13 May 2011.