Formula for the derivative of a ratio of functions
In calculus , the quotient rule  is a method of finding the derivative  of a function  that is the ratio of two differentiable functions.[ 1] [ 2] [ 3] 
  
    
      
        h 
        ( 
        x 
        ) 
        = 
        
          
            
              f 
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              ) 
             
           
         
       
     
    {\displaystyle h(x)={\frac {f(x)}{g(x)}}} 
   
 f  and g  are differentiable and 
  
    
      
        g 
        ( 
        x 
        ) 
        ≠ 
        0. 
       
     
    {\displaystyle g(x)\neq 0.} 
   
 h (x )
  
    
      
        
          h 
          ′ 
         
        ( 
        x 
        ) 
        = 
        
          
            
              
                f 
                ′ 
               
              ( 
              x 
              ) 
              g 
              ( 
              x 
              ) 
              − 
              f 
              ( 
              x 
              ) 
              
                g 
                ′ 
               
              ( 
              x 
              ) 
             
            
              ( 
              g 
              ( 
              x 
              ) 
              
                ) 
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle h'(x)={\frac {f'(x)g(x)-f(x)g'(x)}{(g(x))^{2}}}.} 
   
 It is provable in many ways by using other derivative rules .
Example 1: Basic example [ edit ] Given 
  
    
      
        h 
        ( 
        x 
        ) 
        = 
        
          
            
              e 
              
                x 
               
             
            
              x 
              
                2 
               
             
           
         
       
     
    {\displaystyle h(x)={\frac {e^{x}}{x^{2}}}} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        
          e 
          
            x 
           
         
        , 
        g 
        ( 
        x 
        ) 
        = 
        
          x 
          
            2 
           
         
       
     
    {\displaystyle f(x)=e^{x},g(x)=x^{2}} 
   
 
  
    
      
        
          
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                
                  ( 
                  
                    
                      
                        e 
                        
                          x 
                         
                       
                      
                        x 
                        
                          2 
                         
                       
                     
                   
                  ) 
                 
               
              
                = 
                
                  
                    
                      
                        ( 
                        
                          
                            
                              d 
                              
                                d 
                                x 
                               
                             
                           
                          
                            e 
                            
                              x 
                             
                           
                         
                        ) 
                       
                      ( 
                      
                        x 
                        
                          2 
                         
                       
                      ) 
                      − 
                      ( 
                      
                        e 
                        
                          x 
                         
                       
                      ) 
                      
                        ( 
                        
                          
                            
                              d 
                              
                                d 
                                x 
                               
                             
                           
                          
                            x 
                            
                              2 
                             
                           
                         
                        ) 
                       
                     
                    
                      ( 
                      
                        x 
                        
                          2 
                         
                       
                      
                        ) 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      ( 
                      
                        e 
                        
                          x 
                         
                       
                      ) 
                      ( 
                      
                        x 
                        
                          2 
                         
                       
                      ) 
                      − 
                      ( 
                      
                        e 
                        
                          x 
                         
                       
                      ) 
                      ( 
                      2 
                      x 
                      ) 
                     
                    
                      x 
                      
                        4 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        x 
                        
                          2 
                         
                       
                      
                        e 
                        
                          x 
                         
                       
                      − 
                      2 
                      x 
                      
                        e 
                        
                          x 
                         
                       
                     
                    
                      x 
                      
                        4 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      x 
                      
                        e 
                        
                          x 
                         
                       
                      − 
                      2 
                      
                        e 
                        
                          x 
                         
                       
                     
                    
                      x 
                      
                        3 
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        e 
                        
                          x 
                         
                       
                      ( 
                      x 
                      − 
                      2 
                      ) 
                     
                    
                      x 
                      
                        3 
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {d}{dx}}\left({\frac {e^{x}}{x^{2}}}\right)&={\frac {\left({\frac {d}{dx}}e^{x}\right)(x^{2})-(e^{x})\left({\frac {d}{dx}}x^{2}\right)}{(x^{2})^{2}}}\\&={\frac {(e^{x})(x^{2})-(e^{x})(2x)}{x^{4}}}\\&={\frac {x^{2}e^{x}-2xe^{x}}{x^{4}}}\\&={\frac {xe^{x}-2e^{x}}{x^{3}}}\\&={\frac {e^{x}(x-2)}{x^{3}}}.\end{aligned}}} 
   
 
Example 2: Derivative of tangent function [ edit ] The quotient rule can be used to find the derivative of 
  
    
      
        tan 
         
        x 
        = 
        
          
            
              sin 
               
              x 
             
            
              cos 
               
              x 
             
           
         
       
     
    {\displaystyle \tan x={\frac {\sin x}{\cos x}}} 
   
 
  
    
      
        
          
            
              
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                tan 
                 
                x 
               
              
                = 
                
                  
                    d 
                    
                      d 
                      x 
                     
                   
                 
                
                  ( 
                  
                    
                      
                        sin 
                         
                        x 
                       
                      
                        cos 
                         
                        x 
                       
                     
                   
                  ) 
                 
               
             
            
              
                = 
                
                  
                    
                      
                        ( 
                        
                          
                            
                              d 
                              
                                d 
                                x 
                               
                             
                           
                          sin 
                           
                          x 
                         
                        ) 
                       
                      ( 
                      cos 
                       
                      x 
                      ) 
                      − 
                      ( 
                      sin 
                       
                      x 
                      ) 
                      
                        ( 
                        
                          
                            
                              d 
                              
                                d 
                                x 
                               
                             
                           
                          cos 
                           
                          x 
                         
                        ) 
                       
                     
                    
                      
                        cos 
                        
                          2 
                         
                       
                       
                      x 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      ( 
                      cos 
                       
                      x 
                      ) 
                      ( 
                      cos 
                       
                      x 
                      ) 
                      − 
                      ( 
                      sin 
                       
                      x 
                      ) 
                      ( 
                      − 
                      sin 
                       
                      x 
                      ) 
                     
                    
                      
                        cos 
                        
                          2 
                         
                       
                       
                      x 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        cos 
                        
                          2 
                         
                       
                       
                      x 
                      + 
                      
                        sin 
                        
                          2 
                         
                       
                       
                      x 
                     
                    
                      
                        cos 
                        
                          2 
                         
                       
                       
                      x 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    1 
                    
                      
                        cos 
                        
                          2 
                         
                       
                       
                      x 
                     
                   
                 
                = 
                
                  sec 
                  
                    2 
                   
                 
                 
                x 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}{\frac {d}{dx}}\tan x&={\frac {d}{dx}}\left({\frac {\sin x}{\cos x}}\right)\\&={\frac {\left({\frac {d}{dx}}\sin x\right)(\cos x)-(\sin x)\left({\frac {d}{dx}}\cos x\right)}{\cos ^{2}x}}\\&={\frac {(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2}x}}\\&={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}\\&={\frac {1}{\cos ^{2}x}}=\sec ^{2}x.\end{aligned}}} 
   
 
The reciprocal rule is a special case of the quotient rule in which the numerator 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        1 
       
     
    {\displaystyle f(x)=1} 
   
 
  
    
      
        
          h 
          ′ 
         
        ( 
        x 
        ) 
        = 
        
          
            d 
            
              d 
              x 
             
           
         
        
          [ 
          
            
              1 
              
                g 
                ( 
                x 
                ) 
               
             
           
          ] 
         
        = 
        
          
            
              0 
              ⋅ 
              g 
              ( 
              x 
              ) 
              − 
              1 
              ⋅ 
              
                g 
                ′ 
               
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              
                ) 
                
                  2 
                 
               
             
           
         
        = 
        
          
            
              − 
              
                g 
                ′ 
               
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              
                ) 
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle h'(x)={\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]={\frac {0\cdot g(x)-1\cdot g'(x)}{g(x)^{2}}}={\frac {-g'(x)}{g(x)^{2}}}.} 
   
 
Utilizing the chain rule  yields the same result.
Proof from derivative definition and limit properties [ edit ] Let 
  
    
      
        h 
        ( 
        x 
        ) 
        = 
        
          
            
              f 
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              ) 
             
           
         
        . 
       
     
    {\displaystyle h(x)={\frac {f(x)}{g(x)}}.} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        g 
        ( 
        x 
        ) 
       
     
    {\displaystyle f(x)g(x)} 
   
 
  
    
      
        
          
            
              
                
                  h 
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  lim 
                  
                    k 
                    → 
                    0 
                   
                 
                
                  
                    
                      h 
                      ( 
                      x 
                      + 
                      k 
                      ) 
                      − 
                      h 
                      ( 
                      x 
                      ) 
                     
                    k 
                   
                 
               
             
            
              
                = 
                
                  lim 
                  
                    k 
                    → 
                    0 
                   
                 
                
                  
                    
                      
                        
                          
                            f 
                            ( 
                            x 
                            + 
                            k 
                            ) 
                           
                          
                            g 
                            ( 
                            x 
                            + 
                            k 
                            ) 
                           
                         
                       
                      − 
                      
                        
                          
                            f 
                            ( 
                            x 
                            ) 
                           
                          
                            g 
                            ( 
                            x 
                            ) 
                           
                         
                       
                     
                    k 
                   
                 
               
             
            
              
                = 
                
                  lim 
                  
                    k 
                    → 
                    0 
                   
                 
                
                  
                    
                      f 
                      ( 
                      x 
                      + 
                      k 
                      ) 
                      g 
                      ( 
                      x 
                      ) 
                      − 
                      f 
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      + 
                      k 
                      ) 
                     
                    
                      k 
                      ⋅ 
                      g 
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      + 
                      k 
                      ) 
                     
                   
                 
               
             
            
              
                = 
                
                  lim 
                  
                    k 
                    → 
                    0 
                   
                 
                
                  
                    
                      f 
                      ( 
                      x 
                      + 
                      k 
                      ) 
                      g 
                      ( 
                      x 
                      ) 
                      − 
                      f 
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      + 
                      k 
                      ) 
                     
                    k 
                   
                 
                ⋅ 
                
                  lim 
                  
                    k 
                    → 
                    0 
                   
                 
                
                  
                    1 
                    
                      g 
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      + 
                      k 
                      ) 
                     
                   
                 
               
             
            
              
                = 
                
                  lim 
                  
                    k 
                    → 
                    0 
                   
                 
                
                  [ 
                  
                    
                      
                        f 
                        ( 
                        x 
                        + 
                        k 
                        ) 
                        g 
                        ( 
                        x 
                        ) 
                        − 
                        f 
                        ( 
                        x 
                        ) 
                        g 
                        ( 
                        x 
                        ) 
                        + 
                        f 
                        ( 
                        x 
                        ) 
                        g 
                        ( 
                        x 
                        ) 
                        − 
                        f 
                        ( 
                        x 
                        ) 
                        g 
                        ( 
                        x 
                        + 
                        k 
                        ) 
                       
                      k 
                     
                   
                  ] 
                 
                ⋅ 
                
                  
                    1 
                    
                      [ 
                      g 
                      ( 
                      x 
                      ) 
                      
                        ] 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  [ 
                  
                    
                      lim 
                      
                        k 
                        → 
                        0 
                       
                     
                    
                      
                        
                          f 
                          ( 
                          x 
                          + 
                          k 
                          ) 
                          g 
                          ( 
                          x 
                          ) 
                          − 
                          f 
                          ( 
                          x 
                          ) 
                          g 
                          ( 
                          x 
                          ) 
                         
                        k 
                       
                     
                    − 
                    
                      lim 
                      
                        k 
                        → 
                        0 
                       
                     
                    
                      
                        
                          f 
                          ( 
                          x 
                          ) 
                          g 
                          ( 
                          x 
                          + 
                          k 
                          ) 
                          − 
                          f 
                          ( 
                          x 
                          ) 
                          g 
                          ( 
                          x 
                          ) 
                         
                        k 
                       
                     
                   
                  ] 
                 
                ⋅ 
                
                  
                    1 
                    
                      [ 
                      g 
                      ( 
                      x 
                      ) 
                      
                        ] 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  [ 
                  
                    
                      lim 
                      
                        k 
                        → 
                        0 
                       
                     
                    
                      
                        
                          f 
                          ( 
                          x 
                          + 
                          k 
                          ) 
                          − 
                          f 
                          ( 
                          x 
                          ) 
                         
                        k 
                       
                     
                    ⋅ 
                    g 
                    ( 
                    x 
                    ) 
                    − 
                    f 
                    ( 
                    x 
                    ) 
                    ⋅ 
                    
                      lim 
                      
                        k 
                        → 
                        0 
                       
                     
                    
                      
                        
                          g 
                          ( 
                          x 
                          + 
                          k 
                          ) 
                          − 
                          g 
                          ( 
                          x 
                          ) 
                         
                        k 
                       
                     
                   
                  ] 
                 
                ⋅ 
                
                  
                    1 
                    
                      [ 
                      g 
                      ( 
                      x 
                      ) 
                      
                        ] 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      ) 
                      − 
                      f 
                      ( 
                      x 
                      ) 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      [ 
                      g 
                      ( 
                      x 
                      ) 
                      
                        ] 
                        
                          2 
                         
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}h'(x)&=\lim _{k\to 0}{\frac {h(x+k)-h(x)}{k}}\\&=\lim _{k\to 0}{\frac {{\frac {f(x+k)}{g(x+k)}}-{\frac {f(x)}{g(x)}}}{k}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k\cdot g(x)g(x+k)}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k}}\cdot \lim _{k\to 0}{\frac {1}{g(x)g(x+k)}}\\&=\lim _{k\to 0}\left[{\frac {f(x+k)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+k)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x)}{k}}-\lim _{k\to 0}{\frac {f(x)g(x+k)-f(x)g(x)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)-f(x)}{k}}\cdot g(x)-f(x)\cdot \lim _{k\to 0}{\frac {g(x+k)-g(x)}{k}}\right]\cdot {\frac {1}{[g(x)]^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{[g(x)]^{2}}}.\end{aligned}}} 
   
 
  
    
      
        
          lim 
          
            k 
            → 
            0 
           
         
        
          
            1 
            
              g 
              ( 
              x 
              + 
              k 
              ) 
              g 
              ( 
              x 
              ) 
             
           
         
        = 
        
          
            1 
            
              [ 
              g 
              ( 
              x 
              ) 
              
                ] 
                
                  2 
                 
               
             
           
         
       
     
    {\displaystyle \lim _{k\to 0}{\frac {1}{g(x+k)g(x)}}={\frac {1}{[g(x)]^{2}}}} 
   
 
  
    
      
        g 
        ( 
        x 
        ) 
       
     
    {\displaystyle g(x)} 
   
 
  
    
      
        
          lim 
          
            k 
            → 
            0 
           
         
        g 
        ( 
        x 
        + 
        k 
        ) 
        = 
        g 
        ( 
        x 
        ) 
       
     
    {\displaystyle \lim _{k\to 0}g(x+k)=g(x)} 
   
 
Proof using implicit differentiation [ edit ] Let 
  
    
      
        h 
        ( 
        x 
        ) 
        = 
        
          
            
              f 
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              ) 
             
           
         
        , 
       
     
    {\displaystyle h(x)={\frac {f(x)}{g(x)}},} 
   
 
  
    
      
        f 
        ( 
        x 
        ) 
        = 
        g 
        ( 
        x 
        ) 
        h 
        ( 
        x 
        ) 
        . 
       
     
    {\displaystyle f(x)=g(x)h(x).} 
   
 
The product rule  then gives 
  
    
      
        
          f 
          ′ 
         
        ( 
        x 
        ) 
        = 
        
          g 
          ′ 
         
        ( 
        x 
        ) 
        h 
        ( 
        x 
        ) 
        + 
        g 
        ( 
        x 
        ) 
        
          h 
          ′ 
         
        ( 
        x 
        ) 
        . 
       
     
    {\displaystyle f'(x)=g'(x)h(x)+g(x)h'(x).} 
   
 
Solving for 
  
    
      
        
          h 
          ′ 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle h'(x)} 
   
 
  
    
      
        h 
        ( 
        x 
        ) 
       
     
    {\displaystyle h(x)} 
   
 
  
    
      
        
          
            
              
                
                  h 
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      − 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      h 
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      − 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      ⋅ 
                      
                        
                          
                            f 
                            ( 
                            x 
                            ) 
                           
                          
                            g 
                            ( 
                            x 
                            ) 
                           
                         
                       
                     
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      ) 
                      − 
                      f 
                      ( 
                      x 
                      ) 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      [ 
                      g 
                      ( 
                      x 
                      ) 
                      
                        ] 
                        
                          2 
                         
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}h'(x)&={\frac {f'(x)-g'(x)h(x)}{g(x)}}\\&={\frac {f'(x)-g'(x)\cdot {\frac {f(x)}{g(x)}}}{g(x)}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{[g(x)]^{2}}}.\end{aligned}}} 
   
 
Proof using the reciprocal rule or chain rule [ edit ] Let 
  
    
      
        h 
        ( 
        x 
        ) 
        = 
        
          
            
              f 
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              ) 
             
           
         
        = 
        f 
        ( 
        x 
        ) 
        ⋅ 
        
          
            1 
            
              g 
              ( 
              x 
              ) 
             
           
         
        . 
       
     
    {\displaystyle h(x)={\frac {f(x)}{g(x)}}=f(x)\cdot {\frac {1}{g(x)}}.} 
   
 
Then the product rule gives 
  
    
      
        
          h 
          ′ 
         
        ( 
        x 
        ) 
        = 
        
          f 
          ′ 
         
        ( 
        x 
        ) 
        ⋅ 
        
          
            1 
            
              g 
              ( 
              x 
              ) 
             
           
         
        + 
        f 
        ( 
        x 
        ) 
        ⋅ 
        
          
            d 
            
              d 
              x 
             
           
         
        
          [ 
          
            
              1 
              
                g 
                ( 
                x 
                ) 
               
             
           
          ] 
         
        . 
       
     
    {\displaystyle h'(x)=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right].} 
   
 
To evaluate the derivative in the second term, apply the reciprocal rule , or the power rule  along with the chain rule :
  
    
      
        
          
            d 
            
              d 
              x 
             
           
         
        
          [ 
          
            
              1 
              
                g 
                ( 
                x 
                ) 
               
             
           
          ] 
         
        = 
        − 
        
          
            1 
            
              g 
              ( 
              x 
              
                ) 
                
                  2 
                 
               
             
           
         
        ⋅ 
        
          g 
          ′ 
         
        ( 
        x 
        ) 
        = 
        
          
            
              − 
              
                g 
                ′ 
               
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              
                ) 
                
                  2 
                 
               
             
           
         
        . 
       
     
    {\displaystyle {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]=-{\frac {1}{g(x)^{2}}}\cdot g'(x)={\frac {-g'(x)}{g(x)^{2}}}.} 
   
 
Substituting the result into the expression gives
  
    
      
        
          
            
              
                
                  h 
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                
                  f 
                  ′ 
                 
                ( 
                x 
                ) 
                ⋅ 
                
                  
                    1 
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
                + 
                f 
                ( 
                x 
                ) 
                ⋅ 
                
                  [ 
                  
                    
                      
                        − 
                        
                          g 
                          ′ 
                         
                        ( 
                        x 
                        ) 
                       
                      
                        g 
                        ( 
                        x 
                        
                          ) 
                          
                            2 
                           
                         
                       
                     
                   
                  ] 
                 
               
             
            
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
                − 
                
                  
                    
                      f 
                      ( 
                      x 
                      ) 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      
                        ) 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
                ⋅ 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
                − 
                
                  
                    
                      f 
                      ( 
                      x 
                      ) 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      
                        ) 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      ) 
                      − 
                      f 
                      ( 
                      x 
                      ) 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      
                        ) 
                        
                          2 
                         
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}h'(x)&=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot \left[{\frac {-g'(x)}{g(x)^{2}}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {g(x)}{g(x)}}\cdot {\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}} 
   
 
Proof by logarithmic differentiation [ edit ] Let 
  
    
      
        h 
        ( 
        x 
        ) 
        = 
        
          
            
              f 
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              ) 
             
           
         
        . 
       
     
    {\displaystyle h(x)={\frac {f(x)}{g(x)}}.} 
   
 absolute value  and natural logarithm  of both sides of the equation gives
  
    
      
        ln 
         
        
          | 
         
        h 
        ( 
        x 
        ) 
        
          | 
         
        = 
        ln 
         
        
          | 
          
            
              
                f 
                ( 
                x 
                ) 
               
              
                g 
                ( 
                x 
                ) 
               
             
           
          | 
         
       
     
    {\displaystyle \ln |h(x)|=\ln \left|{\frac {f(x)}{g(x)}}\right|} 
   
 
Applying properties of the absolute value and logarithms,
  
    
      
        ln 
         
        
          | 
         
        h 
        ( 
        x 
        ) 
        
          | 
         
        = 
        ln 
         
        
          | 
         
        f 
        ( 
        x 
        ) 
        
          | 
         
        − 
        ln 
         
        
          | 
         
        g 
        ( 
        x 
        ) 
        
          | 
         
       
     
    {\displaystyle \ln |h(x)|=\ln |f(x)|-\ln |g(x)|} 
   
 
Taking the logarithmic derivative  of both sides,
  
    
      
        
          
            
              
                h 
                ′ 
               
              ( 
              x 
              ) 
             
            
              h 
              ( 
              x 
              ) 
             
           
         
        = 
        
          
            
              
                f 
                ′ 
               
              ( 
              x 
              ) 
             
            
              f 
              ( 
              x 
              ) 
             
           
         
        − 
        
          
            
              
                g 
                ′ 
               
              ( 
              x 
              ) 
             
            
              g 
              ( 
              x 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {h'(x)}{h(x)}}={\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}} 
   
 
Solving for 
  
    
      
        
          h 
          ′ 
         
        ( 
        x 
        ) 
       
     
    {\displaystyle h'(x)} 
   
 
  
    
      
        
          
            
              
                f 
                ( 
                x 
                ) 
               
              
                g 
                ( 
                x 
                ) 
               
             
           
         
       
     
    {\displaystyle {\tfrac {f(x)}{g(x)}}} 
   
 
  
    
      
        h 
        ( 
        x 
        ) 
       
     
    {\displaystyle h(x)} 
   
 
  
    
      
        
          
            
              
                
                  h 
                  ′ 
                 
                ( 
                x 
                ) 
               
              
                = 
                h 
                ( 
                x 
                ) 
                
                  [ 
                  
                    
                      
                        
                          
                            f 
                            ′ 
                           
                          ( 
                          x 
                          ) 
                         
                        
                          f 
                          ( 
                          x 
                          ) 
                         
                       
                     
                    − 
                    
                      
                        
                          
                            g 
                            ′ 
                           
                          ( 
                          x 
                          ) 
                         
                        
                          g 
                          ( 
                          x 
                          ) 
                         
                       
                     
                   
                  ] 
                 
               
             
            
              
                = 
                
                  
                    
                      f 
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
                
                  [ 
                  
                    
                      
                        
                          
                            f 
                            ′ 
                           
                          ( 
                          x 
                          ) 
                         
                        
                          f 
                          ( 
                          x 
                          ) 
                         
                       
                     
                    − 
                    
                      
                        
                          
                            g 
                            ′ 
                           
                          ( 
                          x 
                          ) 
                         
                        
                          g 
                          ( 
                          x 
                          ) 
                         
                       
                     
                   
                  ] 
                 
               
             
            
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      ) 
                     
                   
                 
                − 
                
                  
                    
                      f 
                      ( 
                      x 
                      ) 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      
                        ) 
                        
                          2 
                         
                       
                     
                   
                 
               
             
            
              
                = 
                
                  
                    
                      
                        f 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                      g 
                      ( 
                      x 
                      ) 
                      − 
                      f 
                      ( 
                      x 
                      ) 
                      
                        g 
                        ′ 
                       
                      ( 
                      x 
                      ) 
                     
                    
                      g 
                      ( 
                      x 
                      
                        ) 
                        
                          2 
                         
                       
                     
                   
                 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}h'(x)&=h(x)\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f(x)}{g(x)}}\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}} 
   
 
Taking the absolute value of the functions is necessary for the logarithmic differentiation  of functions that may have negative values, as logarithms are only real-valued  for positive arguments. This works because 
  
    
      
        
          
            
              d 
              
                d 
                x 
               
             
           
         
        ( 
        ln 
         
        
          | 
         
        u 
        
          | 
         
        ) 
        = 
        
          
            
              
                u 
                ′ 
               
              u 
             
           
         
       
     
    {\displaystyle {\tfrac {d}{dx}}(\ln |u|)={\tfrac {u'}{u}}} 
   
 
Higher order derivatives [ edit ] Implicit differentiation can be used to compute the n th derivative of a quotient (partially in terms of its first n  − 1
  
    
      
        f 
        = 
        g 
        h 
       
     
    {\displaystyle f=gh} 
   
 
  
    
      
        
          f 
          ″ 
         
        = 
        
          g 
          ″ 
         
        h 
        + 
        2 
        
          g 
          ′ 
         
        
          h 
          ′ 
         
        + 
        g 
        
          h 
          ″ 
         
       
     
    {\displaystyle f''=g''h+2g'h'+gh''} 
   
 
  
    
      
        
          h 
          ″ 
         
       
     
    {\displaystyle h''} 
   
 
  
    
      
        
          h 
          ″ 
         
        = 
        
          
            ( 
            
              
                f 
                g 
               
             
            ) 
           
          ″ 
         
        = 
        
          
            
              
                f 
                ″ 
               
              − 
              
                g 
                ″ 
               
              h 
              − 
              2 
              
                g 
                ′ 
               
              
                h 
                ′ 
               
             
            g 
           
         
        . 
       
     
    {\displaystyle h''=\left({\frac {f}{g}}\right)''={\frac {f''-g''h-2g'h'}{g}}.}