Jump to content

Runge–Kutta–Fehlberg method

From Wikipedia, the free encyclopedia

In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods.

The novelty of Fehlberg's method is that it is an embedded method from the Runge–Kutta family, meaning that it reuses the same intermediate calculations to produce two estimates of different accuracy, allowing for automatic error estimation. The method presented in Fehlberg's 1969 paper has been dubbed the RKF45 method, and is a method of order O(h4) with an error estimator of order O(h5).[1] By performing one extra calculation, the error in the solution can be estimated and controlled by using the higher-order embedded method that allows for an adaptive stepsize to be determined automatically.

Butcher tableau for Fehlberg's 4(5) method

[edit]

Any Runge–Kutta method is uniquely identified by its Butcher tableau. The embedded pair proposed by Fehlberg:[2]

Coefficients for RK4(5), Formula 2 (Fehlberg)[2]
κ ακ βκλ cκ (4th order) ĉκ (5th order)
λ=0 λ=1 λ=2 λ=3 λ=4
0 0 0         25/216 16/135
1 1/4 1/4         0 0
2 3/8 3/32 9/32       1408/2565 6656/12825
3 12/13 1932/2197 −7200/2197 7296/2197     2197/4104 28561/56430
4 1 439/216 −8 3680/513 −845/4104   −1/5 −9/50
5 1/2 −8/27 2 −3544/2565 1859/4104 −11/40 2/55
This shows the computational time in real time used during a 3-body simulation evolved with the Runge-Kutta-Fehlberg method. Most of the computer time is spent when the bodies pass close by and are susceptible to numerical error.

Implementing an RK4(5) Algorithm

[edit]

The coefficients found by Fehlberg for Formula 1 (derivation with his parameter α2=1/3) are given in the table below. Note that while Fehlberg's original tables begin indexing at 0, the standard mathematical convention for Runge–Kutta methods established by Butcher uses coefficients denoted as with and . Therefore, when implementing these methods in programming languages that use 0-based array indexing, there is a shift between the mathematical notation and array indices: what appears as in the mathematical formulation corresponds to index 0 in the implementation arrays.[3]

Coefficients for RK4(5), Formula 1 (Fehlberg)[2]
κ ακ βκλ cκ (4th order) ĉκ (5th order)
λ=0 λ=1 λ=2 λ=3 λ=4
0 0 0         1/9 47/450
1 2/9 2/9         0 0
2 1/3 1/12 1/4       9/20 12/25
3 3/4 69/128 −243/128 135/64     16/45 32/225
4 1 -17/12 27/4 -27/5 16/15   1/12 1/30
5 5/6 65/432 -5/16 13/16 4/27 5/144 6/25

Fehlberg[4] outlines a solution to solving a system of n differential equations of the form: to iterative solve for where h is an adaptive stepsize to be determined algorithmically:

The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.

Then the weighted average is:[2]

The estimate of the truncation error is:[2]

At the completion of the step, a new stepsize is calculated:[5]

If , then replace with and repeat the step. If , then the step is completed. Replace with for the next step.

The coefficients found by Fehlberg for Formula 2 (derivation with his parameter α2 = 3/8) are given in the table below:

Coefficients for RK4(5), Formula 2 (Fehlberg)[2]
κ ακ βκλ cκ (4th order) ĉκ (5th order)
λ=0 λ=1 λ=2 λ=3 λ=4
0 0 0         25/216 16/135
1 1/4 1/4         0 0
2 3/8 3/32 9/32       1408/2565 6656/12825
3 12/13 1932/2197 -7200/2197 7296/2197     2197/4104 28561/56430
4 1 439/216 -8 3680/513 -845/4104   -1/5 -9/50
5 1/2 -8/27 2 -3544/2565 1859/4104 -11/40   2/55

In another table in Fehlberg,[2] coefficients for an RKF4(5) derived by D. Sarafyan are given:

Coefficients for Sarafyan's RK4(5), Table IV in Fehlberg[2]
κ ακ βκλ cκ (4th order) ĉκ (5th order)
λ=0 λ=1 λ=2 λ=3 λ=4
0 0 0         1/6 1/24
1 1/2 1/2         0 0
2 1/2 1/4 1/4 1/4     2/3 0
3 1 0 -1 2     1/6 5/48
4 2/3 7/27 10/27 0 1/27     27/56
5 1/5 28/625 -1/5 546/625 54/625 -378/625   125/336


See also

[edit]

Notes

[edit]
  1. ^ According to Hairer et al. (1993, §II.4), the method was originally proposed in Fehlberg (1969); Fehlberg (1970) is an extract of the latter publication.
  2. ^ a b c d e f g h Fehlberg, Erwin. "Low-Order Classical Runge-Kutta Formulas With Stepsize Control And Their Application To Some Heat Transfer Problems" (PDF). nasa.gov. National Aeronautics And Space Administration. Retrieved 1 August 2025.
  3. ^ Butcher, John C. "Introduction to Runge–Kutta methods" (PDF). University of Auckland. Retrieved 2025-08-01.
  4. ^ Hairer, Nørsett & Wanner (1993, p. 177) refer to Fehlberg (1969)
  5. ^ Gurevich, Svetlana (2017). "Appendix A Runge-Kutta Methods" (PDF). Munster Institute for Theoretical Physics. pp. 8–11. Retrieved 4 March 2022.

References

[edit]
  • Fehlberg, Erwin (1968) Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with stepsize control. NASA Technical Report 287. https://ntrs.nasa.gov/api/citations/19680027281/downloads/19680027281.pdf
  • Fehlberg, Erwin (1969) Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. Vol. 315. National aeronautics and space administration.
  • Fehlberg, Erwin (1969). "Klassische Runge-Kutta-Nystrom-Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle". Computing. 4: 93–106. doi:10.1007/BF02234758. S2CID 38715401.
  • Fehlberg, Erwin (1970) Some experimental results concerning the error propagation in Runge-Kutta type integration formulas. NASA Technical Report R-352. https://ntrs.nasa.gov/api/citations/19700031412/downloads/19700031412.pdf
  • Fehlberg, Erwin (1970). "Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme," Computing (Arch. Elektron. Rechnen), vol. 6, pp. 61–71. doi:10.1007/BF02241732
  • Hairer, Ernst; Nørsett, Syvert; Wanner, Gerhard (1993). Solving Ordinary Differential Equations I: Nonstiff Problems (Second ed.). Berlin: Springer-Verlag. ISBN 3-540-56670-8.
  • Sarafyan, Diran (1966) Error Estimation for Runge-Kutta Methods Through Pseudo-Iterative Formulas. Technical Report No. 14, Louisiana State University in New Orleans, May 1966.

Further reading

[edit]