Snub pentapentagonal tiling
Appearance
	
	
| Snub pentapentagonal tiling | |
|---|---|
Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic uniform tiling | 
| Vertex configuration | 3.3.5.3.5 | 
| Schläfli symbol | s{5,4} sr{5,5}  | 
| Wythoff symbol | | 5 5 2 | 
| Coxeter diagram | |
| Symmetry group | [5+,4], (5*2) [5,5]+, (552)  | 
| Dual | Order-5-5 floret pentagonal tiling | 
| Properties | Vertex-transitive | 
In geometry, the snub pentapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{5,5}, constructed from two regular pentagons and three equilateral triangles around every vertex.
Images
[edit]Drawn in chiral pairs, with edges missing between black triangles:
Symmetry
[edit]A double symmetry coloring can be constructed from [5,4] symmetry with only one color pentagon. It has Schläfli symbol s{5,4}, and Coxeter diagram ![]()
![]()
![]()
![]()
.
Related tilings
[edit]| Uniform pentapentagonal tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [5,5], (*552) | [5,5]+, (552) | ||||||||||
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
=  | 
=  | ||||
| Order-5 pentagonal tiling  {5,5}  | 
Truncated order-5 pentagonal tiling  t{5,5}  | 
Order-4 pentagonal tiling  r{5,5}  | 
Truncated order-5 pentagonal tiling  2t{5,5} = t{5,5}  | 
Order-5 pentagonal tiling  2r{5,5} = {5,5}  | 
Tetrapentagonal tiling  rr{5,5}  | 
Truncated order-4 pentagonal tiling  tr{5,5}  | 
Snub pentapentagonal tiling  sr{5,5}  | ||||
| Uniform duals | |||||||||||
| Order-5 pentagonal tiling  V5.5.5.5.5  | 
V5.10.10 | Order-5 square tiling  V5.5.5.5  | 
V5.10.10 | Order-5 pentagonal tiling  V5.5.5.5.5  | 
V4.5.4.5 | V4.10.10 | V3.3.5.3.5 | ||||
| Uniform pentagonal/square tilings | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | ||||||||
| {5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
| Uniform duals | |||||||||||
| V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 | ||
| 4n2 symmetry mutations of snub tilings: 3.3.n.3.n | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symmetry 4n2  | 
Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
| 222 | 322 | 442 | 552 | 662 | 772 | 882 | ∞∞2 | ||||
| Snub figures  | 
|||||||||||
| Config. | 3.3.2.3.2 | 3.3.3.3.3 | 3.3.4.3.4 | 3.3.5.3.5 | 3.3.6.3.6 | 3.3.7.3.7 | 3.3.8.3.8 | 3.3.∞.3.∞ | |||
| Gyro figures  | 
|||||||||||
| Config. | V3.3.2.3.2 | V3.3.3.3.3 | V3.3.4.3.4 | V3.3.5.3.5 | V3.3.6.3.6 | V3.3.7.3.7 | V3.3.8.3.8 | V3.3.∞.3.∞ | |||
See also
[edit]Wikimedia Commons has media related to Uniform tiling 3-3-5-3-5.
References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.