始新世-渐新世灭绝事件
外观
![]() | 此條目需要精通或熟悉古生物的编者参与及协助编辑。 |
始新世-渐新世灭绝事件是指始新世结束至渐新世开始之间的过渡時期,约3390万年至3340万年前的地质时期更替、生物灭绝事件及动物群更新现象[1]。此時許多海洋以及水生生物遭到滅絕,有蹄類踝節目動物就是其中之一。另外,某种γ逆转病毒感染了当时几乎所有真兽类,并遗留下了ERV-Fc,并一直持续到中新世中期灭绝事件。

原因
[编辑]气候变化说
[编辑]始新世与渐新世的分界线以南极洲冰川作用及随之开启的晚新生代冰期为标志[2]。这一气候体系的巨大变迁是当前解释该灭绝事件成因的主要假说。尽管南极大陆在中、晚始新世可能曾存在过短暂冰盖,但此次全球剧烈变冷事件标志着南极洲开始被永久性冰盖覆盖[3][4],也宣告了早古近纪温室气候的终结。在北美中部,年均温度在40万年间下降了约8.2±3.1°C[5]。西藏中部曾出现接近冰点的环境[6]。赤道海域在始新世-渐新世过渡期后出现异常低的古生产力,东赤道太平洋的深海温度在此期间急剧下降[7] [8]。
当前主流气候模型预测,大气二氧化碳浓度自中晚始新世起持续缓慢下降是当时气候变冷的主因[9][10][11] 。在南极大规模冰川作用开始前的最后数十万年里,显著降温已然发生[12]。约3400万年前,这种冷却效应达到某个临界点[13][14],随着二氧化碳浓度下降,东南极洲开始形成大冰盖[15][16]。二氧化碳分压下降的诱因是印度次大陆漂移至赤道纬度,加剧了德干玄武岩的硅酸盐风化[17]。另一因素是德雷克海峡的打开与南极绕极流的形成,其通过海洋环流促进底层冷水上涌,并孤立南极周边水域以减少热量输送[18]。与此同时,塔斯马尼亚通道也在该时期开启[19]。
陨石撞击说
[编辑]另一种推测指向该时期若干大型陨石撞击事件,包括直径40公里的切萨皮克湾陨石坑和西伯利亚中部的波皮盖撞击坑。
变化
[编辑]地域动物区系 | 该灭绝前 | 该灭绝后 |
---|---|---|
欧洲 | 由古兽科动物(马的远亲)、偶蹄类动物的6个科(无防兽科、剑齿兽科、河猪科、长尾猪科、双锥齿兽科和疑刍驼科)、啮齿类动物Pseudosciuridae,以及灵长类动物Omomyidae和Adapidae组成。 | 最早的犀牛(属犀科)、3个偶蹄动物科(巨猪科、炭兽科和吉洛鹿科,分别于现今的猪、河马和反刍类动物有亲缘关系)、多种啮齿科动物(如Eomyidae、仓鼠科、河狸科)以及真盲缺目的刺猬科动物。而原来的古兽马(Palaeotherium)、无防兽科动物、剑齿兽科动物和疑刍驼科动物的化石则完全消失了。 |
加勒比地区 | 以 假红树属 为主的红树林 | 以红树属为主的现代红树林 |
海洋生物 | 帘蛤目双壳类在生物复苏期间出现短期体型增大现象。圆板虫类有孔虫在此事件中消失,苔藓虫相随之扩张以填补其生态位。硅藻占据了像现代一样的优势地位 |
参考文献
[编辑]引用
[编辑]- ^ Ivany, Linda C.; Patterson, William P.; Lohmann, Kyger C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary (PDF). Nature. 2000, 407 (6806): 887–890 [2022-02-03]. Bibcode:2000Natur.407..887I. PMID 11057663. S2CID 4408282. doi:10.1038/35038044. hdl:2027.42/62707
. (原始内容 (PDF)存档于2020-05-19).
- ^ Lear, Caroline H.; Bailey, Trevor R.; Pearson, Paul N.; Coxall, Helen K.; Rosenthal, Yair. Cooling and ice growth across the Eocene-Oligocene transition
. Geology. 1 March 2008, 36 (3): 251 [1 January 2024]. ISSN 0091-7613. doi:10.1130/G24584A.1 (英语).
- ^ Zachos, James C.; Quinn, Terrence M.; Salamy, Karen A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition
. Paleoceanography and Paleoclimatology. 1996-06-01, 11 (3): 251–266 [17 March 2023]. Bibcode:1996PalOc..11..251Z. ISSN 1944-9186. doi:10.1029/96PA00571 (英语).
- ^ Shackleton, N. J. Boundaries and Events in the Paleogene Paleogene stable isotope events
. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 October 1986, 57 (1): 91–102 [17 March 2023]. Bibcode:1986PPP....57...91S. doi:10.1016/0031-0182(86)90008-8.
- ^ Zanazzi, Alessandro; Kohn, Matthew J.; MacFadden, Bruce J.; Terry, Dennis O. Large temperature drop across the Eocene–Oligocene transition in central North America
. Nature. 8 February 2007, 445 (7128): 639–642 [23 October 2024]. ISSN 0028-0836. PMID 17287808. doi:10.1038/nature05551 (英语).
- ^ Xia, Guoqing; Mansour, Ahmed; Shi, Zhu; Hao, Xiawei; Ahmed, Mohamed S.; Radwan, Ahmed E.; Machaniec, Elżbieta. Cold climatic snaps during the Eocene-Oligocene transition in the central Tibetan Plateau: Implications for ice-induced sedimentary structures and isotope geochemistry
. Palaeogeography, Palaeoclimatology, Palaeoecology. 1 March 2023, 637: 112010 [23 October 2024]. doi:10.1016/j.palaeo.2023.112010 –通过Elsevier Science Direct (英语).
- ^ Moore, T. C.; Wade, Bridget S.; Westerhold, Thomas; Erhardt, Andrea M.; Coxall, Helen K.; Baldauf, Jack; Wagner, Meghan. Equatorial Pacific productivity changes near the Eocene-Oligocene boundary. Paleoceanography and Paleoclimatology. 12 August 2014, 29 (9): 825–844 [23 October 2024]. ISSN 0883-8305. doi:10.1002/2014PA002656. hdl:2027.42/109311
(英语).
- ^ Taylor, V. E.; Wilson, P. A.; Bohaty, S. M.; Meckler, A. N. Transient Deep Ocean Cooling in the Eastern Equatorial Pacific Ocean at the Eocene-Oligocene Transition. Paleoceanography and Paleoclimatology. 14 August 2023, 38 (8) [23 October 2024]. ISSN 2572-4517. doi:10.1029/2023PA004650. hdl:11250/3108964
(英语).
- ^ Villa, Giuliana; Fioroni, Chiara; Persico, Davide; Roberts, Andrew P.; Florindo, Fabio. Middle Eocene to Late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity. Paleoceanography and Paleoclimatology. 20 December 2013, 29 (3): 223–237. doi:10.1002/2013PA002518
. hdl:11380/994920
.
- ^ Cappelli, C.; Bown, P. R.; Westerhold, T.; Bohaty, S. M.; De Riu, M.; Loba, V.; Yamamoto, Y.; Agnini, C. The Early to Middle Eocene Transition: An Integrated Calcareous Nannofossil and Stable Isotope Record From the Northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410). Paleoceanography and Paleoclimatology. 15 November 2019, 34 (12): 1913–1930. Bibcode:2019PaPa...34.1913C. S2CID 210245165. doi:10.1029/2019PA003686
. hdl:11577/3322441
.
- ^ Pagani, Mark; Zachos, James C.; Freeman, Katherine H.; Tipple, Brett; Bohaty, Stephen. Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene
. Science. 22 July 2005, 309 (5734): 600–603 [1 January 2024]. ISSN 0036-8075. PMID 15961630. doi:10.1126/science.1110063 (英语).
- ^ Evans, David; Wade, Bridget S.; Henehan, Michael; Erez, Jonathan; Müller, Wolfgang. Revisiting carbonate chemistry controls on planktic foraminifera Mg / Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition. Climate of the Past. 6 April 2016, 12 (4): 819–835 [5 April 2023]. Bibcode:2016CliPa..12..819E. doi:10.5194/cp-12-819-2016
.
- ^ Hutchinson, David K.; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; De Boer, Agatha M.; Baatsen, Michiel; Von der Heydt, Anna; Huber, Matthew; Kennedy-Asser, Alan T.; Kunzmann, Lutz; Ladant, Jean-Baptiste; Lear, Caroline H.; Moraweck, Karolin; Pearson, Paul N.; Piga, Emanuela; Pound, Matthew J.; Salzmann, Ulrich; Scher, Howie D.; Sijp, Willem P.; Śliwińska, Kasia K.; Wilson, Paul A.; Zhang, Zhongshi. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past. 28 January 2021, 17 (1): 269–315 [17 March 2023]. Bibcode:2021CliPa..17..269H. S2CID 234099337. doi:10.5194/cp-17-269-2021
. hdl:11250/3135351
.
- ^ Pearson, Paul N.; Foster, Gavin L.; Wade, Bridget S. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition
. Nature. 13 September 2009, 461 (7267): 1110–1113 [17 March 2023]. Bibcode:2009Natur.461.1110P. PMID 19749741. S2CID 205218274. doi:10.1038/nature08447.
- ^ Galeotti, Simone; Deconto, Robert; Naish, Timothy; Stocchi, Paolo; Florindo, Fabio; Pagani, Mark; Barrett, Peter; Bohaty, Steven M.; Lanci, Luca; Pollard, David; Sandroni, Sonia; Talarico, Franco M.; Zachos, James C. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science. 10 March 2016, 352 (6281): 76–80. Bibcode:2016Sci...352...76G. PMID 27034370. S2CID 24154493. doi:10.1126/science.aab0669
. hdl:11365/1007376
.
- ^ Wilson, Douglas S.; Luyendyk, Bruce P. West Antarctic paleotopography estimated at the Eocene-Oligocene climate transition
. Geophysical Research Letters. 25 August 2009, 36 (16): 1–4 [8 December 2022]. Bibcode:2009GeoRL..3616302W. S2CID 163074. doi:10.1029/2009GL039297.
- ^ Kent, Dennis V.; Muttoni, Giovanni. Equatorial convergence of India and early Cenozoic climate trends. Proceedings of the National Academy of Sciences of the United States of America. 21 October 2008, 105 (42): 16065–16070. ISSN 0027-8424. PMC 2570972
. PMID 18809910. doi:10.1073/pnas.0805382105
(英语).
- ^ Barker, P.F.; Thomas, E. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current
. Earth-Science Reviews. June 2004, 66 (1–2): 143–162 [1 January 2024]. doi:10.1016/j.earscirev.2003.10.003 –通过Elsevier Science Direct (英语).
- ^ Kennett, James P.; Exon, Neville F., Exon, Neville F.; Kennett, James P.; Malone, Mitchell J. , 编, Paleoceanographic evolution of the Tasmanian Seaway and its climatic implications
, Geophysical Monograph Series 151 (Washington, D. C.: American Geophysical Union), 2004, 151: 345–367 [2024-01-02], ISBN 978-0-87590-416-0, doi:10.1029/151gm19 (英语)