非结构性碳水化合物
外观
沒有或很少條目链入本條目。 (2025年9月26日) |
非结构性碳水化合物(英语:Non-structural carbohydrates,缩写:NSC)是植物体内重要的代谢成分[1],包括可溶性糖和淀粉两大类[2]。是植物呼吸作用的主要能量来源,并参与渗透调节和防御体系的构建[3]。
组成
[编辑]NSC主要由可溶性糖和淀粉组成[2]。可溶性糖直接参与多种生命活动,同时在植物遭受外界胁迫时发挥关键的调节作用;淀粉则作为储备物质,可在能量需求增加时迅速转化为可溶性糖,以满足即时的能量供应[4]。二者之间的动态平衡反映了光合作用碳同化与代谢需求之间的协调关系[2]。
生理作用
[编辑]NSC不仅是能量物质,还作为植物应对环境变化的重要信号分子[5]。在光照不足时,植物通过降低光补偿点和暗呼吸速率来维持较高的NSC水平,从而提升弱光利用能力[6]。在干旱时,植物通过激活淀粉降解酶,将淀粉转化为可溶性糖,以提供能量并增强细胞渗透调节能力,从而提高抗旱性[7][8]。土壤肥力,尤其是氮素含量,与植物的碳代谢紧密相关,对NSC的合成具有显著的影响[9]。
研究表明,拥有高NSC储备的植物在环境压力(如干旱、低温等)下通常表现出更强的存活能力,这表明增加NSC储存是应对环境压力的一种有效适应策略[10]。
参考文献
[编辑]- ^ Signori-Müller, C; Oliveira, RS; Barros, FV; Tavares, JV; Gilpin, M; Diniz, FC; Zevallos, MJM; Yupayccana, CAS; Acosta, M; Bacca, J; Chino, RSC; Cuellar, GMA; Cumapa, ERM; Martinez, F; Mullisaca, FMP; Nina, A; Sanchez, JMB; da Silva, LF; Tello, L; Tintaya, JS; Ugarteche, MTM; Baker, TR; Bittencourt, PRL; Borma, LS; Brum, M; Castro, W; Coronado, ENH; Cosio, EG; Feldpausch, TR; Fonseca, LDM; Gloor, E; Llampazo, GF; Malhi, Y; Mendoza, AM; Moscoso, VC; Araujo-Murakami, A; Phillips, OL; Salinas, N; Silveira, M; Talbot, J; Vasquez, R; Mencuccini, M; Galbraith, D. Non-structural carbohydrates mediate seasonal water stress across Amazon forests.. Nature communications. 2021-04-19, 12 (1): 2310. PMID 33875648. doi:10.1038/s41467-021-22378-8.
- ^ 2.0 2.1 2.2 Sun, Tao; Mao, Zijun; Dong, Lili; Hou, Lingling; Song, Yuan; Wang, Xiuwei. Further evidence for slow decomposition of very fine roots using two methods: litterbags and intact cores. Plant and Soil. 2013-05, 366 (1-2): 633–646. doi:10.1007/s11104-012-1457-3.
- ^ Martínez‐Vilalta, Jordi; Sala, Anna; Asensio, Dolores; Galiano, Lucía; Hoch, Günter; Palacio, Sara; Piper, Frida I.; Lloret, Francisco. Dynamics of non‐structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs. 2016-11, 86 (4): 495–516. doi:10.1002/ecm.1231.
- ^ Hartmann, H; Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know.. The New phytologist. 2016-07, 211 (2): 386–403. PMID 27061438. doi:10.1111/nph.13955.
- ^ Wang, Bin; Zhong, Yiqian; Yang, Meixue; Wu, Miaorui; Wang, Yanping; Lu, Fang; Tao, Wanglan; Li, Jianxing; Zhao, Hongming; Liu, Shengyuan; Xiang, Wusheng; Li, Xiankun. Spatial variation of non-structural carbohydrates in the leaves of dominant tree species and ecological driving factors in a karst seasonal rainforest. Biodiversity Science. 2024, 32 (12): 24325. doi:10.17520/biods.2024325.
- ^ 魏春燕; 李月灵, 金则新, 罗光宇, 陈超, 单方权. 遮荫对七子花幼苗光合特性和非结构性碳水化合物含量的影响. 植物研究. 2022, 42 (6): 1096–1105 [2025-09-25]. doi:10.7525/j.issn.1673-5102.2022.06.020.
- ^ Tomasella, M; Häberle, KH; Nardini, A; Hesse, B; Machlet, A; Matyssek, R. Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings.. Scientific reports. 2017-10-30, 7 (1): 14308. PMID 29085007. doi:10.1038/s41598-017-14645-w.
- ^ Thalmann, M; Santelia, D. Starch as a determinant of plant fitness under abiotic stress.. The New phytologist. 2017-05, 214 (3): 943–951. PMID 28277621. doi:10.1111/nph.14491.
- ^ Li, W; Hartmann, H; Adams, HD; Zhang, H; Jin, C; Zhao, C; Guan, D; Wang, A; Yuan, F; Wu, J. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species.. Tree physiology. 2018-11-01, 38 (11): 1706–1723. PMID 29897549. doi:10.1093/treephys/tpy059.
- ^ O’Brien, Michael J.; Reynolds, Glen; Ong, Robert; Hector, Andy. Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nature Ecology & Evolution. 2017-09-25, 1 (11): 1643–1648. doi:10.1038/s41559-017-0326-0.