芽孢杆菌界
芽孢杆菌界![]() | |
---|---|
![]() | |
扫描电子显微图像,衣氏放线菌(Actinomyces israelii)菌种属于放线菌门 | |
科学分类 ![]() | |
域: | 细菌域 Bacteria |
界: | 芽孢杆菌界 Bacillati (Gibbons & Murray 1978) Oren & Göker 2024 |
模式属 | |
芽孢杆菌属 Bacillus Cohn 1872 (1980年批准名单)[2]
| |
门[1] | |
異名 | |
|
芽孢杆菌界(学名:Bacillati)[3],其前称为大地细菌、陆地细菌(“Terrabacteria”),是一个包含大约三分之二原核生物物种的界,包括革兰氏阳性细菌门(放线菌门和芽孢杆菌门)以及蓝细菌门、绿弯菌门和奇异球菌门。[4][5]
该菌界先前名称“Terrabacteria”衍生自terra,意思为“陆地”,即源于陆地生命进化的压力。芽孢杆菌界具有重要的适应性,例如抵抗环境危害(干燥、紫外线辐射和高盐度)和进行产氧光合作用。此外,革兰氏阳性菌细胞壁的独特性质可能是为适应陆地条件而进化而来的,这也成为该界许多物种存在致病性。[5]这些结果现在表明,陆地适应在原核生物进化中可能发挥比目前所理解的更大作用。[4][5]
“Terrabacteria(大地细菌)”(同义词Bacillati〔芽孢杆菌界〕)于2004年被提出用于指代放线菌门、蓝细菌门和奇异球菌门,后来扩展至包括芽孢杆菌门和绿弯菌门。[4][5]其他系统发育分析支持这些门类之间的密切关系。[6][7][8]大多数未归入“陆地细菌”的原核生物物种被归入“水生细菌”分类单元(也称为假单胞菌界)[5][9],这是根据这些物种共同祖先所处的潮湿环境推断的。一些分子系统发育分析并不支持芽孢杆菌界和假单胞菌界的这种二分法,[10][11]但最近的基因组分析,[7][8]包括那些专注于构建进化树的分析,[7]发现这两组是单系的。[7]
据推测,芽孢杆菌界和假单胞菌界在大约30亿年前分化,这表明当时陆地(大陆)已被原核生物占领。[5]芽孢杆菌界和假单胞菌界共同形成一个大演化支,包含截至2009年已知的97%的原核生物和99%的所有细菌种类,并被归入Selabacteria(光细菌)分类单元,以暗指它们的光养能力(希腊语中为σέλας〔sela〕即“光”的意思)。[12]目前,对于芽孢杆菌界和假单胞菌界之外的细菌界(从而证明Selabacteria分类单元的合理性)存在争议,并且可能包括或不包括梭杆菌(Fusobacteria)。[5][7]
“Glidobacteria(滑行细菌)”[13]这个名称包括了芽孢杆菌界的一些成员,但排除了大型革兰氏阳性菌群芽孢杆菌门和放线菌门,并且不受分子系统发育数据的支持。[4][5][6][10][11][7][8]此外,命名Glidobacteria[13]的文章没有包括分子系统发育或统计分析,也没有遵循广泛使用的三域系统。例如,它声明真核生物是在最近(约9亿年前)从古菌中分离出来的,这与化石记录相矛盾,[14] 真核生物和古菌谱系嵌套在细菌中,是放线菌门的近亲。
2022年,原核生物界级分类单元引入了新规则,提出这些新规则的两位作者在2024年提出了新的名称。[3] 他们得出结论:“从分类学角度来看,对于细菌界来说,更好的解决方案似乎是接受巴蒂斯图齐(Battistuzzi)和赫奇斯(Hedges)在研究中提出的细分方法”,并进行改进。[5] 新的界(且唯一有效)名称是Bacillati(芽孢杆菌界)。[3]
系统发育
[编辑]根据巴蒂斯图齐和赫奇斯2009年的系统发育分析得出的系统发育树状图如下,并经过分子钟校准。[4][5]

最近的分子分析大致发现了以下关系,包括其他门类,其关系尚不确定。[15][16][17][18][19][20]
芽孢杆菌界 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
另一方面,科尔曼(Coleman)等人[7]把热袍菌门(Thermotogota)、奇异球菌门(Deinococcota)、互养菌门(Synergistota)的组成与其相关的演化支命名为DST群,此外,分析表明超小细菌(CPR群)可能属于与绿弯菌门关系更密切的芽孢杆菌界。根据这项研究,有时包含的产水菌门属于假单胞菌界,而梭杆菌门可以同时属于芽孢杆菌界和假单胞菌界。结果如下:[7]
芽孢杆菌界 |
| ||||||||||||||||||||||||||||||||||||||||||||||||
参考文献
[编辑]- ^ Parte, A.C., Sardà Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Göker, M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70, 5607-5612; DOI: 10.1099/ijsem.0.004332
- ^ Bacillati in LPSN; Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology. 1 November 2020, 70 (11): 5607–5612. doi:10.1099/ijsem.0.004332
.
- ^ 3.0 3.1 3.2 Göker, Markus; Oren, Aharon. Valid publication of names of two domains and seven kingdoms of prokaryotes. International Journal of Systematic and Evolutionary Microbiology. 2024-01-22, 74 (1). ISSN 1466-5026. PMID 38252124. doi:10.1099/ijsem.0.006242
(英语).
- ^ 4.0 4.1 4.2 4.3 4.4 Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology. November 2004, 4: 44. PMC 533871
. PMID 15535883. doi:10.1186/1471-2148-4-44
.
- ^ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 Battistuzzi FU, Hedges SB. A major clade of prokaryotes with ancient adaptations to life on land. Molecular Biology and Evolution. February 2009, 26 (2): 335–343. PMID 18988685. doi:10.1093/molbev/msn247.
- ^ 6.0 6.1 Bern M, Goldberg D. Automatic selection of representative proteins for bacterial phylogeny. BMC Evolutionary Biology. May 2005, 5 (1): 34. PMC 1175084
. PMID 15927057. doi:10.1186/1471-2148-5-34
.
- ^ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. A rooted phylogeny resolves early bacterial evolution. Science. May 2021, 372 (6542): eabe0511. PMID 33958449. S2CID 233872903. doi:10.1126/science.abe0511. hdl:1983/51e9e402-36b7-47a6-91de-32b8cf7320d2
.
- ^ 8.0 8.1 8.2 Léonard RR, Sauvage E, Lupo V, Perrin A, Sirjacobs D, Charlier P, et al. Was the Last Bacterial Common Ancestor a Monoderm after All?. Genes. February 2022, 13 (2): 376. PMC 8871954
. PMID 35205421. doi:10.3390/genes13020376
.
- ^ Kingdom: Pseudomonadati.
- ^ 10.0 10.1 Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nature Microbiology. April 2016, 1 (5): 16048. PMID 27572647. S2CID 3833474. doi:10.1038/nmicrobiol.2016.48
.
- ^ 11.0 11.1 Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nature Communications. December 2019, 10 (1): 5477. Bibcode:2019NatCo..10.5477Z. PMC 6889312
. PMID 31792218. doi:10.1038/s41467-019-13443-4.
- ^ Battistuzzi FU, Hedges SB. Eubacteria. Hedges SB, Kumar S (编). The Timetree of Life. New York: Oxford University Press. 2009: 106–115.
- ^ 13.0 13.1 Cavalier-Smith T. Rooting the tree of life by transition analyses. Biology Direct. July 2006, 1 (1): 19. PMC 1586193
. PMID 16834776. doi:10.1186/1745-6150-1-19
.
- ^ Knoll AH. Life on a Young Planet : The First Three Billion Years of Evolution on Earth - Updated Edition. Princeton University Press. 2003. ISBN 0-691-00978-3. OCLC 1303471348.
- ^ Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications. October 2016, 7: 13219. Bibcode:2016NatCo...713219A. PMC 5079060
. PMID 27774985. doi:10.1038/ncomms13219.
- ^ Matheus Carnevali PB, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nature Communications. January 2019, 10 (1): 463. Bibcode:2019NatCo..10..463M. PMC 6349859
. PMID 30692531. doi:10.1038/s41467-018-08246-y.
- ^ Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. December 2017, 552 (7685): 400–403. Bibcode:2017Natur.552..400J. PMID 29211716. S2CID 4394421. doi:10.1038/nature25014
. hdl:2440/124244
.
- ^ Tahon G, Tytgat B, Lebbe L, Carlier A, Willems A. Abditibacterium utsteinense sp. nov., the first cultivated member of candidate phylum FBP, isolated from ice-free Antarctic soil samples. Systematic and Applied Microbiology. July 2018, 41 (4): 279–290. Bibcode:2018SyApM..41..279T. PMID 29475572. S2CID 3515091. doi:10.1016/j.syapm.2018.01.009.
- ^ Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. July 2013, 499 (7459): 431–437. Bibcode:2013Natur.499..431R. PMID 23851394. S2CID 4394530. doi:10.1038/nature12352
. hdl:10453/27467
.
- ^ Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications. January 2016, 7: 10476. Bibcode:2016NatCo...710476E. PMC 4737851
. PMID 26814032. doi:10.1038/ncomms10476.