跳去內容

赤池資訊量準則

出自維基百科,自由嘅百科全書
呢幅相入便嘅係日本統計師赤池弘次,赤池準則就係由佢諗出嚟嘅。

赤池資訊量準則(簡稱係英文AIC)係一條用嚟評估統計模型嘅準則,基於資訊理論。攞住分析得出嘅統計模型,赤池準則會同佢計出一個數值,個值反映個模型(同第啲模型相比)做預測嗰陣有幾多誤差,而一般嚟講誤差愈低,個模型就算係愈高質素。因此,赤池準則提供咗一條基準,用嚟選擇邊個模型最好用。[1][2][3]

定義

[編輯]
睇埋:概似函數

根據赤池資訊量準則,評估一個統計模型嗰陣,應該要令以下嘅數值有咁細得咁細:

當中 k 係估計咗嘅參數嘅數量, 係個模型嘅概似函數得到嘅最大數值。

詮釋

[編輯]

喺應用上,建立統計模型嘅人通常會有若干個「可能模型」,佢哋可以檢視唔同模型嘅 AIC 指標值[4],而 AIC 指標值低,就表示個模型能夠充分噉 fit 到數據中嘅規律,同時又唔會過度複雜-即係話 AIC 數值最低嗰個模型係「最好」。

睇埋

[編輯]

引述

[編輯]
  1. Stoica, P.; Selen, Y. (2004), "Model-order selection: a review of information criterion rules", IEEE Signal Processing Magazine (July): 36–47, doi:10.1109/MSP.2004.1311138, S2CID 17338979
  2. McElreath, Richard (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC Press. p. 189. ISBN 978-1-4822-5344-3. AIC provides a surprisingly simple estimate of the average out-of-sample deviance. {{cite book}}: Cite has empty unknown parameter: |1= (help)
  3. Taddy, Matt (2019). Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions. New York: McGraw-Hill. p. 90. ISBN 978-1-260-45277-8. The AIC is an estimate for OOS deviance.
  4. Akaike Information Criterion [AIC]

資源

[編輯]

  • (英文) Arnold, T. W. (2010), "Uninformative parameters and model selection using Akaike's Information Criterion", Journal of Wildlife Management, 74 (6): 1175-1178.