Плосконосая четырёхвосьмиугольная мозаика
Перейти к навигации
Перейти к поиску
Плосконосая четырёхвосьмиугольная мозаика | |
---|---|
![]() | |
Тип | Однородная гиперболическая мозаика |
Конфигурация вершины | 3.3.4.3.8 |
Символ Шлефли | sr{8,4} или |
Символ Витхоффа | | 8 4 2 |
Симметрии | [8,4]+, (842) |
Диаграммы Коксетера — Дынкина | ![]() ![]() ![]() ![]() ![]() |
Двойственные соты | Цветочная пятиугольная мозаика порядка 8-4 |
Свойства | изогональная, хиральная |
Плосконосая четырёхвосьмиугольная мозаика — это однородная мозаика на гиперболической плоскости. Её символ Шлефли sr{5,4}.
Изображения
[править | править код]Рисунок в виде хиральной пары, рёбра между чёрными треугольниками не нарисованы:
Связанные многогранники и мозаики
[править | править код]Плосконосая четырёхвосьмиугольная мозаика является седьмой в ряду плосконосых многогранников и мозаик с конфигурацией вершины 3.3.4.3.n.
4n2 симметрии плосконосых мозаик: 3.3.4.3.n | ||||||||
---|---|---|---|---|---|---|---|---|
Симметрия 4n2 |
Сферическая | Евклидова | Компактная гиперболическая | Paracomp. | ||||
242 | 342 | 442 | 542 | 642 | 742 | 842 | ∞42 | |
Плосконосые мозаики |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конфиг. | 3.3.4.3.2 | 3.3.4.3.3 | 3.3.4.3.4 | 3.3.4.3.5 | 3.3.4.3.6 | 3.3.4.3.7 | 3.3.4.3.8 | 3.3.4.3.∞ |
Гиро- мозаики |
![]() |
![]() |
![]() |
![]() |
||||
Конфиг. | V3.3.4.3.2 | V3.3.4.3.3 | V3.3.4.3.4 | V3.3.4.3.5 | V3.3.4.3.6 | V3.3.4.3.7 | V3.3.4.3.8 | V3.3.4.3.∞ |
Однородные восьмиугольные/квадратные мозаики | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[8,4], (*842) (with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries) (и подсимметрия [(∞,4,∞,4)] (*4242) ) | |||||||||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
{8,4} | t{8,4} |
r{8,4} | 2t{8,4}=t{4,8} | 2r{8,4}={4,8} | rr{8,4} | tr{8,4} | |||||
Однордные двойственные | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
V84 | V4.16.16 | V(4.8)2 | V8.8.8 | V48 | V4.4.4.8 | V4.8.16 | |||||
Альтернированные | |||||||||||
[1+,8,4] (*444) |
[8+,4] (8*2) |
[8,1+,4] (*4222) |
[8,4+] (4*4) |
[8,4,1+] (*882) |
[(8,4,2+)] (2*42) |
[8,4]+ (842) | |||||
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() = ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
h{8,4} | s{8,4} | hr{8,4} | s{4,8} | h{4,8} | hrr{8,4} | sr{8,4} | |||||
Альтернированные двойственные | |||||||||||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
|||||||
V(4.4)4 | V3.(3.8)2 | V(4.4.4)2 | V(3.4)3 | V88 | V4.44 | V3.3.4.3.8 |
Смотрите также
[править | править код]- Квадратная мзаика
- Мозаики из выпуклых правильных многоугольников на евклидовой плоскости
- Список однородных мозаик на евклидовой плоскости
- Список правильных многомерных многогранников и соединений
Литература
[править | править код]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss. Chapter 19, The Hyperbolic Archimedean Tessellations // . — 2008. — ISBN 978-1-56881-220-5.
- Chapter 10: Regular honeycombs in hyperbolic space // The Beauty of Geometry: Twelve Essays. — Dover Publications, 1999. — ISBN 0-486-40919-8. — .
Ссылки
[править | править код]- Weisstein, Eric W. Hyperbolic tiling (англ.) на сайте Wolfram MathWorld.
- Weisstein, Eric W. Poincaré hyperbolic disk (англ.) на сайте Wolfram MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch